Received 29 September 2004 Accepted 1 October 2004

Online 9 October 2004

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Elmar Hecht‡

Universität Leipzig, Institut für Anorganische Chemie, Johannisallee 29, D-04103 Leipzig, Germany

Present address: SusTech Darmstadt GmbH & Co KG, Petersenstraße 20, D-64287 Darmstadt, Germany

Correspondence e-mail: elmar.hecht@sustech.de

Key indicators

Single-crystal X-ray study T = 213 K Mean σ (C–C) = 0.004 Å R factor = 0.028 wR factor = 0.084 Data-to-parameter ratio = 13.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The title Schiff base compound, $[Fe(C_5H_5)(C_{14}H_{14}N)]$, consists of discrete monomeric molecules separated by van der Waals contacts. The C=N bond length is 1.267 (3) Å. The ferrocenyl unit and the alkyl moiety bonded to the N atom of

the imino group are arranged in trans positions.

[(1-Phenylethyl)iminomethyl]ferrocene

Comment

During the past decade optically active ferrocenyl compounds containing N-, O- and P-donor atoms have attracted considerable attention due to their possible application in the catalysis of enantioselective reactions (Richards & Locke, 1998; Togni, 2000). The structures of several Schiff base complexes containing a ferrocene unit have been reported (Carboni & Monnier, 1999; Enders *et al.*, 1997). The C=N bond distance [1.267 (3) Å] in the imino group of the title compound, (I), is generally consistent with those reported for other complexes of this type. The alkyl moiety in (I) occupies a *trans* position with respect to the ferrocenyl unit. The five membered rings of the ferrocene fragments are planar and parallel [dihedral angle = $3.2 (6)^{\circ}$].

Experimental

The title compound, (I), was prepared by reaction of 1-phenylethylamine (20 mmol) with ferrocenealdehyde (20 mmol) in tetrahydrofuran. The reaction mixture was refluxed for 2 h and the solvent removed *in vacuo* to give an orange precipitate. The solid was collected and dried *in vacuo*. Suitable crystals were obtained by cooling a saturated solution of (I) in diethyl ether. Analysis calculated for $C_{19}H_{19}FeN$: C 71.92, H 6.00, Fe 17.66%; found: C 72.11, H 6.23, Fe 17.38%.

Crystal data	
$[Fe(C_5H_5)(C_{14}H_{14}N)]$	$D_x = 1.365 \text{ Mg m}^{-3}$
$M_r = 317.20$	Mo $K\alpha$ radiation
Monoclinic, P2 ₁	Cell parameters from 3511
a = 5.9480(3) Å	reflections
b = 7.5010 (4) Å	$\theta = 2-25^{\circ}$
c = 17.3197 (10) Å	$\mu = 0.97 \text{ mm}^{-1}$
$\beta = 92.751 \ (1)^{\circ}$	T = 213 (2) K
$V = 771.84 (7) \text{ Å}^3$	Block, orange
Z = 2	$0.40 \times 0.30 \times 0.20$ mm

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

metal-organic papers

Data collection

Bruker SMART CCD
diffractometer3511 independ
3264 reflection ω scans $R_{int} = 0.020$ Absorption correction: multi-scan
(SADABS; Sheldrick, 1996) $\theta_{max} = 28.8^{\circ}$ $T_{min} = 0.698, T_{max} = 0.830$ $k = -7 \rightarrow 6$ 5063 measured reflections $l = -23 \rightarrow 19$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.084$ S = 1.123511 reflections 266 parameters All H-atom parameters refined 3511 independent reflections 3264 reflections with $I > 2\sigma(I)$ $R_{int} = 0.020$ $\theta_{max} = 28.8^{\circ}$ $h = -7 \rightarrow 6$ $k = -9 \rightarrow 10$

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.056P)^{2} + 0.0168P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.007$ $\Delta\rho_{max} = 0.25 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.26 \text{ e} \text{ Å}^{-3}$ Absolute structure: Flack (1983), 1416 Friedel pairs Flack parameter = 0.011 (16)

Table 1Selected geometric parameters (Å, °).

C14-C12	1.514 (3)	N1-C12	1.482 (3)
N1-C11	1.267 (3)	C12-C13	1.527 (4)
C11-N1-C12	115.5 (2)	N1-C12-C13	108.3 (2)
N1-C12-C14	110.7 (2)	C14-C12-C13	112.1 (2)

All H atoms were located in a difference Fourier map and freely refined.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics:

Figure 1 View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: *SHELXL*97 and *PLATON* (Spek, 2003).

Financial support from the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

References

Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Carboni, B. & Monnier, L. (1999). Tetrahedron, 55, 1197-1201.
- Enders, D., Peters, R., Lochtmann, R. & Runsink, J. (1997). Synlett. pp. 1462-1464.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Richards, C. J. & Locke, A. J. (1998). Tetrahedron Asymmetry, 9, 2377-2407.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Togni, A. (2000). J. Organomet. Chem. 598, 365-368.