Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Elmar Hecht \ddagger

Universität Leipzig, Institut für Anorganische Chemie, Johannisallee 29, D-04103 Leipzig, Germany
£ Present address: SusTech Darmstadt GmbH \& Co KG, Petersenstraße 20, D-64287 Darmstadt, Germany

Correspondence e-mail:
elmar.hecht@sustech.de

Key indicators

Single-crystal X-ray study
$T=213 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.028$
$w R$ factor $=0.084$
Data-to-parameter ratio $=13.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

[(1-Phenylethyl)iminomethyl]ferrocene

The title Schiff base compound, $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}\right)\right]$, consists of discrete monomeric molecules separated by van der Waals contacts. The $\mathrm{C}=\mathrm{N}$ bond length is 1.267 (3) \AA. The ferrocenyl unit and the alkyl moiety bonded to the N atom of the imino group are arranged in trans positions.

Comment

During the past decade optically active ferrocenyl compounds containing N -, O - and P -donor atoms have attracted considerable attention due to their possible application in the catalysis of enantioselective reactions (Richards \& Locke, 1998; Togni, 2000). The structures of several Schiff base complexes containing a ferrocene unit have been reported (Carboni \& Monnier, 1999; Enders et al., 1997). The $\mathrm{C}=\mathrm{N}$ bond distance $[1.267$ (3) \AA] in the imino group of the title compound, (I), is generally consistent with those reported for other complexes of this type. The alkyl moiety in (I) occupies a trans position with respect to the ferrocenyl unit. The five membered rings of the ferrocene fragments are planar and parallel [dihedral angle $=3.2(6)^{\circ}$].

(I)

Experimental

The title compound, (I), was prepared by reaction of 1-phenylethylamine (20 mmol) with ferrocenealdehyde (20 mmol) in tetrahydrofuran. The reaction mixture was refluxed for 2 h and the solvent removed in vacuo to give an orange precipitate. The solid was collected and dried in vacuo. Suitable crystals were obtained by cooling a saturated solution of (I) in diethyl ether. Analysis calculated for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{FeN}$: C 71.92, H 6.00, Fe 17.66\%; found: C 72.11, H 6.23, Fe 17.38%.

Crystal data

$\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}\right)\right]$	$D_{x}=1.365 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=317.20$	Mo $K \alpha$ radiation
Monoclinic, $P 2_{\perp}$	Cell parameters from 3511
$a=5.9480(3) \AA$	reflections
$b=7.5010(4) \AA$	$\theta=2-25^{\circ}$
$c=17.3197(10) \AA$	$\mu=0.97 \mathrm{~mm}^{-1}$
$\beta=92.751(1)^{\circ}$	$T=213(2) \mathrm{K}$
$V=771.84(7) \AA^{3}$	Block, orange
$Z=2$	$0.40 \times 0.30 \times 0.20 \mathrm{~mm}$

Received 29 September 2004
Accepted 1 October 2004
Online 9 October 2004

metal-organic papers

Data collection

Bruker SMART CCD diffractometer

ω scans

Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.698, T_{\text {max }}=0.830$
5063 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.084$
$S=1.12$
3511 reflections
266 parameters
All H-atom parameters refined

3511 independent reflections
3264 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.020$
$\theta_{\text {max }}=28.8^{\circ}$
$h=-7 \rightarrow 6$
$k=-9 \rightarrow 10$
$l=-23 \rightarrow 19$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.056 P)^{2}\right.$
$+0.0168 P$]
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.007$
$\Delta \rho_{\text {max }}=0.25 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.26 \mathrm{e}^{-3}$
Absolute structure: Flack (1983),
1416 Friedel pairs
Flack parameter $=0.011(16)$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{C} 14-\mathrm{C} 12$	$1.514(3)$	$\mathrm{N} 1-\mathrm{C} 12$	$1.482(3)$
$\mathrm{N} 1-\mathrm{C} 11$	$1.267(3)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.527(4)$
C11-N1-C12	$115.5(2)$	$\mathrm{N} 1-\mathrm{C} 12-\mathrm{C} 13$	$108.3(2)$
$\mathrm{N} 1-\mathrm{C} 12-\mathrm{C} 14$	$110.7(2)$	$\mathrm{C} 14-\mathrm{C} 12-\mathrm{C} 13$	$112.1(2)$

All H atoms were located in a difference Fourier map and freely refined.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

Figure 1

View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Financial support from the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

References

Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Carboni, B. \& Monnier, L. (1999). Tetrahedron, 55, 1197-1201.
Enders, D., Peters, R., Lochtmann, R. \& Runsink, J. (1997). Synlett. pp. 14621464.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Richards, C. J. \& Locke, A. J. (1998). Tetrahedron Asymmetry, 9, 2377-2407.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Togni, A. (2000). J. Organomet. Chem. 598, 365-368.

